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Abstract

Recent developments in cognitive psychology suggest models for

knowledge and learning that often fall outside the realm of standard test

theory. This paper concerns probability-based inference in terms of such

models. An approach utilizing Bayesian inference networks is outlined.

Basic ideas of structure and computation in inference networks are

discussed, and illustrated with an example from the domain of mixed-

number subtraction.

Key words: Bayesian inference, belief nets, cognitive diagnosis,

cognitive psychology, educational measurement, inference

networks.



Introduction

The psychological paradigm emerging from cognitive psychology suggests new

models for students' capabilitiesa potentially powerful framework to plan instruction,

evaluate progress, and provide feedback to students and teachers (Snow & Lohmann,

1989). As in traditional test theory, however, we face problems of inference: Just what

kinds of things are to be said about students, by themselves or others? What evidence is

needed to support such statements? How much faith can we place in the evidence, and in

the statements? How do we sort out elements of evidence that are overlapping, redundant,

or contradictory? When do we need to ask different questions or pose additional situations

to distinguish among competing explanations of what we see?

This paper discusses a probabilistic framework for addressing questions like these.

The essential idea is to define a space of "student models"simplified characterizations of

students' knowledge, skill, and/or strategies, indexed by variables that signify their key

aspects. From theory and data, one posits probabilities for the ways that students with

different configurations in this space will solve problems, answer questions,.and so on.

This done, the machinery of probability theory allows one to reason from observations of a

student's actions to likely values of parameters in a student model.

Recent developments in statistical theory make it possible to carry out such

inference in large and complex systems of variables. The program of research introduced

here is beginning to explore the potential of this approach in educational assessment and

cognitive diagnosis. By working out the details of specific illustrative examples, we are

learning about the kinds of domains and student models that are practical to address, and

starting to tackle an agenda of practical engineering challenges. We begin with an overview

of inference networks, walking through a simple numerical example from medical
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diagnosis. An example from mixed-number subtraction illustrates the features of the

approach as applied to cognitive assessment.

Probability-Based Inference

Inference is reasoning from what we know and what we observe to explanations,

conclusions, or predictions. We are alway, reasoning in the presence of uncertainty. The

information we work with is typically incomplete, inconclusive, amenable to more than one

explanation. We attempt to establish the weight and coverage of evidence in what we

observe. But the very first question we must address is "Evidence about what?" Schum

(1987, p. 16) points out the crucial distinction between data and evidence: "A datum

becomes evidence in some analytic problem when its relevance to one or more hypotheses

being considered is established. ... [E]vidence is relevant on some hypothesis if it either

increases or decreases the likeliness of the hypothesis. Without hypotheses, the relevance

of no datum could be established." In educational assessment and cognitive diagnosis, we

construct hypotheses around notions of the. nature and acquisition of knowledge and skill.

Schum distinguishes three types of reasoning, the distinctions among which are

central to this presentation. Deductive reasoning flows from generals to particulars, within

an established framework of relationships among variablesfrom causes to effects, from

diseases to symptoms, from the way a crime is committed to the evidence likely to be found

at the scene, from a student's knowledge and skills to observable behavior. That is, under

a given state of affairs, what are the likely outcomes? Inductive reasoning flows in the

opposite direction, also within an established framework of relationshipsfrom effects to

possible causes, from symptoms to diseases, from observable behavior to probable

configurations of a student's knowledge and skills. Given outcomes, what state of affairs

led to them? In abductive reasoning, reasoning proceeds from observations to a new

hypotheses, new variables, or new relationships among variables. "Such a 'bottom-up'

8
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process certainly appears similar to induction; but there is an argument that such reasoning

is, in fact, different from induction since an existing hypothesis collection is enlarged in the

process. Relevant evidentiary tests of this new hypothesis are then deductively inferred

from the new hypothesis." (Schum,.1987, p.20).

The diagnostic approach discussed in this paper consists of a network of variables

defining the student model space, the observable-outcome space, and the interrelationships

a: long them. All three types of reasoning play a role:

Abductive reasoning guides its construction, drawing upon research results and

previous practice to suggest the basic structure and statistical analyses refine it. For

example, Piaget (e.g., 1960) searched painstakingly for commonalities in the

development of children's proportional reasoning abilities over years of unique learning

episodes of individual children. Siegler's (1981) characterization of children's

understandings of balance-beam problems as a sequence of increasingly sophisticated

strategic flowcharts captures key aspects of some of these patterns, and provides a

basis for a student model space (Mislevy, Yamamoto, & Anacker, 1992).

Deductive reasoning, supplemented by parameter estimation, is used to posit

distributions of observable variables given configurations of variables in the student

model. In Siegler's study, this corresponds to determining how a child with a given set

of strategies at her disposal might attack a given balance-beam problem, in terms of

distributions of expected classes of actions.

Inductive reasoning, embodied in the algebra of probability theory, guides reasoning

from observations of a given student to inferences about her knowledge and skills, in

terms of updated beliefs about student-model variables. This corresponds to

9
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characterizing our beliefs about which balance-beam strategies a child possesses after

seeing her responses to a set of problems.

Abductive reasoning, triggered by unexpected patterns in data, is called for again by the

results of the inductive reasoning phase. Sometimes a particular child's responses will

not be consistent with any of the student models in the simplified framework; inductive

reasoning within this framework fails to provide a satisfactory working approximation

of her knowledge and skill. In such cases, we need richer data to support further

exploration, to generate new conjectures.

A key concept in probability-based inference is conditional independence: Defined

generally, one subset of variables may be related in a population, but they are independent

given the values of another subset of variables. In cognitive models, relationships among

observations variables are "explained" by unobservable variables that characterize aspects

of knowledge, skill, Arategies, and so on. In Thompson's (1982) words, we ask "What

can this person be thinking so that his actions make sense from his perspective?" or "What

organization does the student have in mind so that his actions seem, to him, to form a

coherent pattern?" Judah Pearl argues that creating such intervening variables is not merely

a technical convenience, but a natural element in human reasoning:

"...conditional independence is not a grace of nature for which we must

wait passively, but rather a psychological necessity which we satisfy

actively by organizing our knowledge in a specific way. An important tool

in such organization is the identification of intermediate variables that induce

conditional independence among observables; if such variables are not in

our vocabulary, we create them. In medical diagnosis, for instance, when

some symptoms directly influence one another, the medical profession

invents a name for that interaction (e.g., ' syndrome,"complication,'

`pathological state') and treats it as a new auxiliary variable that induces

1 0
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conditional independence; dependency between any two interacting systems

is fully attributed to the dependencies of each on the auxiliary variable."

Pearl, 1988, p. 44.

Conditional independence is thus a conceptual tool to structure reasoning, helping

to define variables, organize relationships, and guide deductive reasoning. In educational

and psychological measurement, a heritage of statistical inference built around

unobservable variables and induced conditional probability relationships extends back to

Spearman's (e.g., 1907) early work with latent variables, to Wright's (1934) path analysis,

to Lazarsfeld's (1950) latent class models. The resemblance of the inference networks

presented below to LISREL diagrams (Joreskog & Sorbom, 1989) is no accident! Our

work shares inferontial machinery with this tradition, but extends the universe of discourse

to student models suggested by cognitive psychology.

Inference Networks

Probability-based inference in complex networks of interdependent variables is an

active topic in statistical research, spurred by applications in such diverse areas as

forecasting, pedigree analysis, troubleshooting, and medical diagnosis (e.g., Lauritzen &

Spiegelhalter, 1988; Pearl, 1988). Current interest centers on obtaining the distributions of

selected variables conditional on observed values of other variables, such as likely

characteristics of offspring of selected animals given characteristics of their ancestors, or

probabilities of disease states given symptoms and test results. As we shall see below,

conditional independence relationships, as suggested by substantive theory, play a central

role in the topology of the network of interrelationships in a system of variables. If the

topology is favorable, such calculations can be carried out in real time in large systems by

means of strictly local operations on small subsets of interrelated variables ("cliques") and

their intersections.
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This section briefly reviews basic concepts of construction and local computation

for inference networks. Details can be found in the statistical and expert-systems literature;

Lauritzen and Spiegelhalter (1988), Pearl (1988), and Shafer and Shenoy (1988), for

example, discuss updating strategies, a kind of generalization of Bayes theorem. Computer

programs are commercially available to carry out the number-crunching aspect. We used

Andersen, Jensen, Olesen, and Jensen's (1989) HUGIN program and Noetic System's

(1991) ERGO for the examples in this presentation.

To move from a structure of interrelationships among variables to a representation

amenable to real-time local calculation, the steps listed below are taken. The first two

encompass defining the key variables in an application and explicating their

iterrelationships. In essence, this information is the input to programs like ERGO and

HUGIN, which then carry out Steps 3 through 7.

Step 1. Recursive representation of the joint distribution of variables.

Step 2. Directed graph representation of (1).

Step 3. Undirected, triangulated graph.

Step 4. Determination of cliques and clique intersections

Step 5. Join tree representation.

Step 6. Potential tables.

Step 7. Updating scheme.

Although computer programs are available, it is useful nevertheless to walk

through the details of simple exampleto watch what happens inside the "black box"to

develop intuition that can guide more ambitious applications. We borrow a simple example

12
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from Andreassen, Jensen, and Olesen (n.d.). It concerns two possible diseases a particular

patient may have, flu and throat infection (FLU and THRINF), and two possible

symptoms, fever and sore throat (1- .V and SORETHR). The diseases are modeled as

independent, and the symptoms as conditionally independent given disease states. These

relationships are depicted in Figure 1, which will be discussed in greater detail below. All

four variables can take values of "yes" and "no." We assume that exactly one value

characterizes each variable for a patient, although we may not know these values with

certainty. We employ probabilities to express our states of belief. We note in passing that

it would be possible to work with the full joint distribution of the four variables in this

e \ample directly, using the textbook form of Bayes theorem to update beliefs of disease

states as symptoms become known. This approach rapidly becomes infeasible as the

number of variables in the system increases, whereas the approach described below has

been employed in networks with over 1000 variables (Andreassen, Woldbye, Falck, &

Andersen, 1987).

[[Figure 1 about here]]

1 . A recursive representation of the joint distribution of variables

A recursive representation of the joint distribution of a set of random variables

X1, XN takes the form

p(Xi,...,X) = p(XnIXn_i,...,X1) p(Xn_1lXn-2,...,X1).-P(X2IX1) p(X1)

P(XilXi..1,...,X1)
j.t (1)

where the term for j=1 is defined as simply p(Xi). A recursive representation can be

written for any ordering of the variables, but one that exploits conditional independence

relationships can prove more useful as variables drop out of the conditioning lists. This is

13
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where substantive theory comes into play; for example, modeling conditional probabilities

of symptoms given disease states, rather than vice versa. The following representation

exploits the independence of FLU and THRINF and the conditional independence of FEV

and SORETHR:

P(FEV, SORETHR, FLU, THRINF)

= P(FEV I SORETHR, FLU, THRINF) P(SORETHR I FLU, THRINF) P(FLU I THRINF) P(THRINF)

= P(FEV I FLU, THRINF) P(SORETHR I FLU, THRINF) P( FLU) P( THRINF). (2)

Equation 2, like Figure 1, indicates the qualitative dependence structure of the

relationships among the variables without specifying quantitative values. Constructing the

full joint distribution from the recursive representation requires the specification of

conditional probability distributions for each variable. For each combination of values of a

variable's parents, this matrix gives the conditional probabilities of each of its potential

values. Associated with variables having no parents, such as FLU and THRINF, is a

vector of base rates or prior probabilities. We shall assign to both FLU and THRINF prior

probabilities of .11 for "yes" and .89 for "no." This might correspond to base rates in a

reference population to which our patient belongs. Conditional probabilities of FEV and of

SORETHR given all combinations of FLU and THRINF appear in Table 1. In practice,

such probabilities would be determined by disease theory, physiological principles, and

past experience. The tabled values indicate that...

Throat infection usually causes a sore throat whether or not flu is also present (.91

and .90 respectively); flu alone occasionally leads to a sore throat (.05), but the

chances of a sore throat without either flu or throat infection is only .01.
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Having both flu and throat infection leads almost certainly to fever (.99); either

disease by itself leads to fever with probability .90; and the probability of fever

when neither disease is present is only .01.

[(Table 1 about here]]

The updating schemes discussed below assume these conditional probabilities are

known with certainty. In practice, of course, they are usually not. Current research in the

field includes characterizing the impact this source of uncertainty, sequentially improving

estimates as additional data are obtained, and incorporating this uncertainty formally by

augmenting the network with variables that parameterize the extent of knowledge about

conditional probabilities (Spiegelhalter, 1989).

2. A directed graph representation of the joint distribution of variables

Corresponding to the algebraic representation of Equation 1 is a graphical

representationadirected acyclic graph (DAG). The graph inherits its "directedness" and

"acyclic" properties from the recursive expression of the distribution in Equation 1.

Direction comes from which variables are written as conditional on others in the

representation, and the recursive expression prohibits "cycles" such as "A depends on B, B

depends on C, and C depends on A." Figure 1, corresponding to Equation 2, is the DAG

for our example. Each variable is a node in the graph; directed arrows run from "parents"

to "children,"1 indicating conditional dependence relationships among the variables.

A DAG depicts the qualitative structure of associations among variables in the

domain. Theory about the domain is the starting point, but a real application requires

model-fitting, model evaluation, and model refinement. While many standard techniques

from statistical theory are useful in this endeavor, certain complications arise. In large

networks, for example, many cases will be incomplete; there is no practical need to obtain

1 5
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the results of additional detailed diagnostic tests for diseases that have already been ruled

out. And while global tests of model fit are useful in comparing alternative models, more

focused tests checking local features of models and verifying predictions one case at a time

are more useful for model refinement. While the updating schemes discussed below take

the DAG structure as given, we must keep in mind that the success of an application

ultimately depends on the care and thought that go into developing that structure.

3. An undirected, triangulated graph

Starting with the DAG, one drops the directions of the associations and adds edges

as necessary to meet two requirements. First, the parents of a given child must be

connected. Secondly, the graph must bo triangulated; that is, any path of connections from

a variable back to itself (a loop) consisting of four or more variables must have a chord, or

"short cut." Triangulation is necessary for expressing probability relationships in a way

that lends itself to coherent propagation of information. Kim and Pearl's (1983) initial

work with individual variables showed how to carry out coherent local updating in singly

connected networks of variables, or networks of variable associations with no loops atall.

Most networks are not singly connected, however. Even our simple example has loops;

for example, one can start a path at FEVER, follow a connection to FLU, then to

SORTHR, then to THRINF, and finally return to FEVER.

The more recent updating schemes discussed here generalize Kim and Pearl's ideas

by arranging variables into subsets called cliques, in a way such that the cliques form a

singly-connected graph. Generalizations of Kim and Pearl's approach can then be applied

at the level of cliques. Triangulating the original graph of variables guarantees that a

singly-connected clique representation can be constructed (Jensen, 1988). A triangulation

scheme is not necessarily unique, and various algorithms have been developed to construct
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triangulated graphs that support efficient calculation (e.g., Tarjan & Yannakakis, 1984).

Figure 2 is the undirected, triangulated graph for our example.

[[Figure 2 about here]]

4. Determination of cliques and clique intersections

From the triangulated graph, one determines cliques, subsets of variables that are

all linked pairwise to one another. Cliques overlap, with sets of overlapping variables

called clique intersections. Cliques and clique intersections constitute the structure for local

updating. Figure 3 shows the two cliques in our example, {FEVER, FLU, THRINF} and

{FLU, THRINF, SORTHR }. The clique intersection is [FLU, THRINF

[[Figure 3 about here]]

Just as there can be multiple ways to produce a triangulated graph from a given

DAG, there can be multiple ways to define cliques from a triangulated graph. Algorithms

for determining a clique structure that supports efficient calculation are also a focus of

research. The amount of computation grows roughly geometrically with clique size, as

measured by the number of possible configurations of all values of all variables in a clique.

A clique representation with many small cliques is therefore preferred to a representation

with a few larger cliques. Strategies for increased efficiency at this stage include redefining

variables, adding variables to break loops, and dropping associations when the

consequences are benign.

5. Join tree representation

A join-tree representation depicts the singly-connected structure of cliques and

clique intersections. This is the structure through which local updating flows. A join tree

exhibits the running intersection property: If a variable appears in two cliques, it appears in
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all cliques and clique intersections in the single path connecting them. Figure 4 gives the

join -tree for our example.

[[Figure 4 about here]]

6. Potential tables

Local calculation is carried out with tables that convey the joint distributions of

variables within cliques, or potential tables. Similar tables forclique intersections are used

to pass updating information from one clique to another. The potential tables in Table 2

indicate the initial status of the network for our example; that is, before specific knowledge

of a particular individual's symptoms or disease states becomes known. For example, the

potential table for Clique I is calculated using the prior probabilities of .11 for both flu and

throat infection, the assumption that they are independent, and the conditional probabilities

of sore throat for each flu/throat-infection combination.

[[Table 2 about here]]

The initial probability for fever can be obtained by marginalizing the potential table

for Clique 1 with respect to flu and throat infection. This amounts to summing down the

"FEVER: yes" column, yielding a value of .20. Similarly, the initial probability for sore

throat is obtained by summing down the "SORTHR: yes" column in the potential table for

Clique 2, yielding .11.

7. Local updating

Absorbing new evidence about a single variable is effected by re-adjusting the

appropriate margin in a potential table that contains that variable, then propagating the

resulting change to the clique to other cliques via the clique intersections. This process

continues outward from the clique where the process began, until all cliques have been

18
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updated. The single-connectedness and running intersection properties of the join tree

assure that coherent probabilities result.

Suppose that we learn the patient in our example does have a fever. How does this

change our beliefs about the other variables? The calculations are summarized in Table 3.

[[Table 3 about here]]

The process begins with the potential table for Clique 1. In the initial conuition, we

had a joint probability distribution for the variables in this clique, say, fo(1-hVER,

FLU, THRINF). We now know with certainty that FEVER=yes, so the column

for FEVER=no is zeroed out.2 Denote the updated potential table f1(1-EVER, FLU,

THRINF). One could re-normalize the entries in the FEVER=yes column at this

point, but only the proportionality information needs to be sent on for updating.

The clique intersection table is updated to reflect the new proportional relationships

among the probabilities for FLU and THRINF, or fi(FLU, THRINF).

Normalizing them to sum to one would give probabilities, P1 (FLU, THRINF),

which marginalize to .51 for FLU=yes and for THRINF=yes.

The potential table for Clique 2 is updated by first dividing all entries in a row by

the value for that row in the original clique intersection table, then multiplying them

by the corresponding entries in the new one obtained in the previous step. The

resulting entries are proportional to the new posterior probabi:ities for the variables

in Clique 2. We now examine the rationale for this step in terms of probabilities

(but recall that it suffices within the black box to simply pass the correct information

about proportionalities along the join tree).



Probability-Based Inference

Page 14

The initial joint probability distribution for Clique 2, P0(FLU,THRINF,SORTHR),

implied beliefs about flu and throat infection that were consistent with those in the

initial status of Clique 1. But incoming information about fever modified belief

about flu arid throat infection, to P1(FLU,THRINF). We want to revise the

information in the potential table for Clique 2 so that it is (1) consistent with the

new beliefs about flu and throat infection, but (2) unchanged in terms of the

relationship of sore throat conditional on fever and throat infection. This is

accomplished as shown below, justifying the divide-by-old-and-multiply-by-new

algorithm:

P, (FLU,THRINF, SORTHR)

= P(S ORTHRI FLU , THRINF) P, (FLU, THRINF)

[ P(SORTHRI FLU, THRINF) (FLU,THRINF)]
P,

PO ( THRINF)

[ Po (FLU ,THRINF, SORTHR)
PI (FLU, THRINF).

Po(FLU,THRINF)

The entries in the Clique 2 potential table can be re-normed to sum to one, as shown

in the final panel in Table 3, to facilitate the calculation of individual combinations

of values or of margins. For example, the revised probability for sore throat is .48.

Application to Cognitive Diagnosis

The approach we are exploring begins in a specific application by defining a

universe of student models. This "supermodel" is indexed by parameters that signify

distinctions between states of understanding. Symbolically, we shall refer to the (typically

vector-valued) parameter of the student-model as T. A particular set of values of ri

specifies a particular student model, or one particular state among the universe of possible

tits
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states the supermodel can accommodate. These parameters can be qualitative or

quantitative, and qualitative parameters can be unordered, partially ordered, or completely

ordered. A supermodel can contain any mixture of these types. Their nature is derived

from the structure and the psychology of the learning area, with the goal of being able to

express essential distinctions among states of knowledge and skill .

Any application faces a modeling problem, a task construction problem, and an

inference problem.

The modeling problem is delineating the states or levels of understanding in a

learning domain. In meaningful applications this might address several distinct strands of

learning, as understanding develops in a number of key concepts, and it might address the

connectivity among those concepts. This substep defines the structure of p(xlri), where x

represents observations. An interesting special case occurs when the universe of student

models can be expressed as performance models (Clancey, 1986). A performance model

consists of a knowledge base and manipulation rules that can be run on problems in a

domain of interest. A particular model can contain both knowledge and production rules

that are incorrect or incomplete; the solutions it produces will be correct or incorrect in

identifiable ways. Here the parameter ri specifies features of performance models, such as

the set of production rules that characterizes a studtnt's state of competence.

Obviously any model will be a gross simplification of the reality of cognition. A

first consideration in what to include in the supermodel is the substance and the psychology

of the domain: Just what are the key concepts? What are important ways of understanding

and misunderstanding them? What are typical paths to competence? A second

consideration is the so-called grain-size problem, or the level of detail at which student-

models should differ. A major factor in answering this question is the decision-making

framework under which the modeling will take place. As Greeno (1976) points out, "It

21
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may not be critical to distinguish between models differing in processing details if the

details lack important implications for quality of student performance in instructional

situations, or the ability of students to progress to further stages of knowledge and

understanding."

An analog for the student model space is Smith & Wesson's "Identikit," which

helps police construct likenesses of suspects. Faces differ in infinitely many ways, and

skilled police artists can sketch infinitely many drawings to match witnesses' recollections

(which is not the say that police artists' drawings duplicate suspects' faces perfectly;

uncertainty enters in the link through the witness). Departments that can't support an artist

use an Identikit, a collection of various face shapes, noses, ears, hair styles, and so on, that

can be combined to approximate witnesses' recollections from a large, but finite, range of

possibilities. The payoff lies not in how accurately the Identikit composite depicts the

suspect, but whether it aids the search enough to justify it7 use.

Research relevant to constructing student models has been carried out in a wide

variety of fields, including cognitive psychology, the psychology of mathematics learning

and science learning, and artificial intelligence (AI) work on student modeling. Cognitive

scientists have suggested general structures such as "frames" or "schemas" that can serve

as a basis for modeling.understanding (e.g., Minsky, 1975; Rumelhart, 1980), and have

begun to devise tasks that probe their features (e.g., Marshall, 1989, 1993). Researchers

interested in the psychology of learning in subject areas such as proportional reasoning

have focused on identifying key concepts, studying how they are typically acquired (e.g.,

in mechanics, Clement, 1982; in ratio and proportional reasoning, Karplus, Pulos, &

Stage, 1983), and constructing observational settings that allow one to infer students'

understanding (e.g., van den Heuvel, 1990; McDermott, 1984). Our approach can succeed

only by building upon foundations of such research.

4
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The task construction problem is devising situations for which students who differ

in the parameter space are likely to behave in observably different ways. The conditional

probabilities of behavior of different types given the unobservablc; state of the student are

the values of p(xlri), which may in turn be modeled in terms of another set of parameters,

say 13, that have to be estimated. The p(xlij) values provide the basis for inferring back

about the student state. An element in x could contain a right or wrong answer to a

multiple-choice test item; it could instead be the problem-solving approach regardless of

whether the answer is right or wrong, the quickness of a responding, a characteristic of a

think-aloud protocol, or an expert's evaluation of a particular aspect of the performance.

The effectiveness of a task is reflected in differences in csmiditional probabilities associated

with different parameter configurations, so a task may be very useful in distinguishing

among some aspects of student models but useless for distinguishing among others

(Marshall, 1989).

The inference problem is reasoning from observations to student models. This is

where the inference network and local computation come into play. The model-building

and item construction steps define the relevant variables (the student-model variables rl and

the observable variables x) and provide conditional probabilities. Let p(i) represent

expectations about ri in a population of interestpossibly non-informative, possibly based

on expert opinion or previous analyses. Together, p(rl) and p(xlri) imply our initial

expectations for what we might observe from a student. Once we make actual

observations, we can revise our probabilities through the network to draw inferences about

ri given x, via p(r1lx) « p(xl-n) p(r)). Thus p(rilx) characterizes belief about a particular

student's model after having observed a sample of the student's behavior.
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Example: Mixed-Number Subtraction

This example illustrates a model that is aimed at the level of short-term instructional

guidance. The form of the evidence being collected is traditionalright or wrong

responses to open-ended mixed-number subtraction problemsbut inferences are carried

out in a student model motivated by cognitive analyses of the domain. It concerns which of

two strategies students apply to the problems, and whether they are able to carry out

procedures required singly or in combination in problems. Although a much finer grain-

size can be entertained for models of these types of skills (e.g., VanLehn's 1990 analysis

of whole number subtraction), this example incorporates the fact that whether an item is

easy or hard to a given student depends in part on the strategy she employs. Rather than

being discarded as noise, as it would be under standard test theory, this interaction is

exploited by the analytic model as a source of evidence about a student's strategy usage.

The data and the cognitive analysis upon which the student model is grounded are

due to Kikumi Tatsuoka (1987, 1990). The middle-school students she studied

characteristically solve mixed number subtraction problems using one of two strategies:

Method A: Convert all whole and mixed numbers to improper fractions, subtract, then

reduce if necessary.

Method B: Separate mixed numbers into whole number and fractional parts, subtract as

two subproblems, borrowing one from minuend whole number if

necessary, then reduce if necessary.

We analyzed 530 students' responses to 15 items. Table 4 shows how we

characterized each item in terms of which of seven suL -ocedures would be required if it

were solved with Method A and which would be required if it were solved with Method B.
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The student model is comprised of a variable for which strategy a student uses and which

of the subprocedures he is able to apply. The structure connecting the unobservable

parameters of the student model and the observable responses is that ideally, a student

using Method X (A or B, as appropriate to that student) would correctly answer items that

under that strategy require only subprocedures the student has at his disposal (see

Falmagne, 1989, Tatsuoka, 1990, and Haertel & Wiley, 1993, on models of this type).

However, sometimes students miss items even under these conditions (false negatives),

and sometimes they correctly answer items when they don't possess the subprocedures by

other, possibly incorrect, means (false positives). The connection between observations

and student model variables is thus probabilistic rather than deterministic.

[[Table 4 about here]]

A network for Method B

Figure 5 is a graphic depiction of the structural relationships in an inference

network for Method B only. Nodes represent variables, and arrows represent dependence

relationships. The joint probability distribution of all variables can be represented as the

product of conditional probabilities, with each variable expressed in terms of conditional

probabilities given its "parents." Five nodes, "Skill " through "Ski115," represent basic

subprocedures that a student who uses Method B might need use to solve items.

Additional nodes, such as "Ski Hsi &2" are conjunctions, representing, for example, either

having or not having both Skill 1 and Skill 2. The node MN stands for "mixed number

skills." It subsumes both Ski113, sTarating whole numbers from fractions, and Ski114,

borrowing a unit from a whole number; the MN node contains the logical relationship that

Ski 113 is a prerequisite for Ski114. All of these skill variables and their combinations are

represented in Figure 5 by rectangles. They are the elements of the student model, or 1.

The relationships among the skill nodes are either empirical (probabilities of having, say,
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Skill 2 given that one does or does not have Skill 1) or logical (one has "Skills1&2" only if

one has both Skill 1 and Skill 2).

[(Figure 5 about here]]

The observables, x, are the actual test items. The ovular nodes representing items

are children of nodes that represent the minimal necessary conjunction of skills necessary to

solve that item if one uses Method B. The relationship between such a node and an item is

probabilistic, indicating false positive and false negative probabilities.

Cognitive theory inspired the structure of this network. Initial estimates of the

numerical values of conditional probability relationships were approximated using results

from Tatsuoka's (1983) "rule space" of the data, with only students she classified as

Method B users. That is, Dr. Tatsuoka's estimate of whether a student did or did not

possess Ski 111 and Ski 112 were taken as truth, and our probabilities of students having

Ski 111, of having Ski 112 given that they did or didn't have S1d112, and so on, are empirical

proportions from this data set. (Duanli Yan and I are exploring the estimation of these

conditional probabilities using the EM algorithm of Dempster, Laird, & Rubin, 1977.)

Table 5 gives three examples of the conditional probabilities matrices we used as input to

HUGIN and ERGO:

Ski 112 given Skill . These are the conditional probabilities of having or not having

Ski112, given that a student does or does not have Ski 111. These were approximated

from the results of Dr. Tatsuoka's analysis, as described above.

Skills1&2 given Skill 1 and Ski112. This is a logical relationship, indicating that a

student has the conjunction of Skills 1 and 2 if and only if she has both Ski 111 and

Ski112.
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Item12 given Skills1&2. This matrix gives the probabilities of correctly answering

Item 12, given that a student does or does not have the requisite set of skills under

Method B. For the row in which Skills1&2 is true, we have the true positive and

false negative success rates, .895 and .105 respectively. For the row in which

Skills1&2 is false, we have the false positive and true negative rates, .452 and

.548. (A relatively high false positive rate such as this often occur when an item on

a test has appeared as a textbook example or homework exercise.)

[[Table 5 about here]]

Figure 6 presents the join tree for the DAG depicted in Figure 5. Figure 7 depicts

base rate probabilities of skill possession and item percents-correct in the network with

empirical associations, using the conditional probabilities from Tatsuoka's Rule Space

analysis. This represents the state of knowledge one has about a student knowing that she

uses Method B, but without having observed any item responses. Figure 8 shows how

beliefs are changed after observing mostly correct answers to items requiring

subprocedures other than Skill 2, but missing most of those that do require it. The base-

rate and the updated probabilities for the five skills shown in Table 6 show substantial

shifts toward the belief that the student commands Skills 1, 3, 4, and possibly 5, but

almost certainly not Skill 2.

[[Figures 6-8 about here]]

[[Table 6 about here]]

A simplified network for Method B

An alternative representation exemplifies the tradeoffs one faces when building

more complex networks, and illustrates their relationships to the network building and

2



Probability-Based Inference

Page 22

manipulation steps discussed above. A simpler network results if empirical relationships

among skills are deleted, as shown in Figure 9. The resulting join tree is shown in Figure

10. The advantage of this simpler network is a join-tree with smaller maximally-sized

clique, containing 4 variables rather than 5. The largest potential table has only 16 entries,

rather than 48. By such simplifications, larger networks of variables can be updated in the

same amount of calculating time. The simpler network uses only direct information from

item responses to update beliefs about skill possession; that is, belief for Skill 3 is changed

only by responses to items that require Skill 3. The tradeoff is the forfeiture of indirect

information. Suppose we have ascertained that students who possess Skills 1 and 2

usually also possess Skill 3. The full network, incorporating this link, would revise our

belief about Skill 3 in response to indirect evidence in the form of correct answers to items

requiring Skills I and 2. The simplified network, omitting the link, would not revise belief

about Skill 3 without direct evidence, or responses to items requiring Skill 3 itself.

[[Figures 9 & 10 about here]]

What kinds of inferential errors result from this simplification? Closed-form results

with simple models indicate that ignoring positive relationships among unobservable

variables higher in the network can lead to weaker, or more conservative, revision of belief

about them from observations. This may be an acceptable price in some cases in return for

being able to incorporate more variables into a network. (On the other hand, ignoring

dependencies among observable variables can lead to overly strong updatinggenerally a

more costly error.) A second rationale foromitting the empirical relationships among

skills is that the resulting model, while conservative for a given population, may be more

transportable to other populationsfor example, students who studied fractions under a

different curriculum. While the skill requirements of items may be fairly consistent over

28
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students, the relationships among skills may depend more heavily on the order and

intensity with which they are studied.

A simultaneous network for both methods

-We built a similar network for Method A. Figure 11 incorporates it and the Method

B network into a single network that is appropriate when we don't know which strategy a

student is using. Each item now has three parents: minimally sufficient sets of

subprocedures under Method A and under Method B, and the new node "Is the student

using Method A or Method B?" An item like 7 4 _ 54 is hard under Method A but easy

under Method B. An item like 223- -14 is just the opposite. A response vector with most of

the first type of items right and the second types wrong shifts belief toward the use of

Method B, while the opposite pattern shifts belief toward the use of Method A. A pattern

with mostly wrong answers gives posterior probabilities for Method A and Method B that

are about the same as the base rate, but low probabilities for possessing any of the skills.

We haven't learned much about which strategy such a student is using, but we do have

evidence that he probably doesn't have subprocedure skills. Similarly, a pattern with

mostly right answers again gives posterior probabilities for Method A and Method B that

are about the same as the base rate, but high probabilities for possessing all of the skills. In

any of these cases, the results could be used to guide an instructional decision.

[[Figure 11 about here--network for both methods]]

Extensions

This example could be extended in many ways, both as to the nature of the

observations and the nature of the student model. With the present student model, one

might explore additional sources of evidence about strategy use: monitoring response

times, tracing solution steps, or simply asking the students to describe their solutions!
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Each has tradeoffs in terms of cost and evidential value, and each could be sensible in some

applications but not others. An important extension of the student model would be to allow

for strategy switching (Kyllonen, Lohman, & Snow, 1984). Adults, for example, often

decide whether to use Method A or Method B for a given item only after gauging which

would be easier to apply. The variables in this more complex student model would express

the tendencies of a student to employ various strategies under various conditions; students

would then be mixtures in and of themsel, es, with "always use Method A" and "always

use Method B" as extreme cases. Mixture problems are notoriously hard statistical

problems; carrying out inference in the context of this more ambitious student model would

certainly require the richer information mentioned above. Anne Be land and I (Be land &

Mislevy, 1992) tackled this problem in the domain of proportional reasoning, addressing

students' solutions to balance-beam tasks. We modeled students in terms of neo-Piagetian

developmental stages based on the availability of certain concepts that could be fashioned

into strategies for different kinds of tasks. The data for inferring a students' stages were

their solutions and their explanations of the strategies they employed.

Conclusion

Inference network models car. play useful roles in educational assessment. One is

the use mentioned in our example, namely, cognitive diagnosis for short term instructional

guidance as in an intelligent tutoring system (ITS). At ETS, we are currently working to

implement probability-based inference updating the student model in an aircraft hydraulics

ITS (Gitomer, Steinberg, & Mislevy, in press). Another is mapping out the evidential

structure of observations and student knowledge structures (Haertel, 1989; Haertel &

Wiley, 1993). As both models and observational contexts become more complex, more

careful thought is required to sort out and characterize the implications and qualities of

assessment tasks if we are to use the information effectively. We plan to explore the kinds
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of problems in which the approach outlined above proves efficacious, and to develop

exemplars and methodological tools for employing it.
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Notes

1 This terminology is from the use of DAGs in pedigree analysis, where nodes represent

characteristics of animals that are in fact parents and children.

2 Partial information, such as' based on a reading from an unreliable thermometer, I'd

place the probability of fever is .80," would lead to proportional re-adjustment of the

columns, maintaining the proportional relationships within columns.

32
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Table 1

Conditional Probabilities of Symptoms Given Disease States

FLU THRINF P(SORETHR)=yes P(SORE'THR)=no

yes yes .91 .09

yes no .05 .95

no yes .90 .10

no no .01 .99

FLU THRINF P(FEV)=yes P(FEV)=no

yes yes .99 .01

yes no .90 .10

no yes .90 .10

no no .01 .99



Table 2

Potential Tables for Initial Status of Knowledge

Clique 1

FLU THRINF FEVER: yes FEVER: no

yes

yes

no

no

yes

no

yes

no

.012

.088

.088

.008

.000

.010

.010

.784

FLU THRINF Probability

yes

yes

no

no

yes

no

yes

no

.012

.098

.098

.792

Clique 2

FLU THRINF SORTHR: yes SORTHR: no

yes

yes

no

no

yes

no

yes

no

.011

.005

.088

.008

.001

.093

.010

.784

3J



Table 3

Potential Tables of "FEVER=yes"

Clique 1

FLU THRINF FEVER: yes FEVER: no

yes yes

yes no

no yes

no no

.012 0

.088 0

.088 0

.008 0

FLU THRINF Probability

yes yes

yes no

no yes

no no

.012

.088

.088

.008

Clique 2

FLU THRINF SORTHR: yes SORTHR: no

yes yes .011 .001

yes no .004 .084

no y '-s .080 .009

no no .000 .008

Re-Normed Table for Clique 2

FLU THRINF SORTHR: yes SORTHR: no

yes yes .059 .005

yes no .020 .426

no yes .406 .046

no no .000 .041



Table 4

Skill Requirements for Fractions Items

If Method A used If Method B used

Item # Text 1 2 5 6 7 2 3 4 5

4 3+-21= x x x x x

6 4
6 7 7 x

7 3-25= x x x x x x x
3 3

8 4 8 x

9 3i-2= x x x x x x

10 42-2i12. = x x x x x x

11 41-24= x x x x x x
il_i

12 8 g- X X x

14 31-3i= x x x

15 2 4 x x x x x x

16 4-;--1 4 = x x x x

17 7 i - 4 = x x x x x

18 4--.13-- =
10
1 -2 to x x x x x x x

19 7 11 = x x x x x x x x x

20 41--1-1= x x x x x x x

Skills:

1. Basic fraction subtraction

2. Simplify/Reduce

3. Separate whole number from fraction

4. Borrow one from whole number to fraction

5. Convert whole number to fraction

6. Convert mixed number to fraction

7. Column borrow in subtraction



Table .5

Examples of Conditional Probability Matrices for Method B Network

Ski 112 given Skull Skill 2 Probabilities

Skill 1 Status Yes No

Yes .662 .338

No .289 .711

Skillsl &2 given Ski 111, Skill2 Skillsl &2 Probabilities

Skill 1 Status Skill 2 Status Yes No

Yes Yes 1 0

Yes No 0 1

No Yes 0 1

No No 0 1

Item12 given Skillsl &2 Item 12 Probabilities

Skills1&2 Status Correct Incorrect

Yes

No

.895 .105

.452 .548



Table 6

Prior and Posterior Probabilities of Subprocedure Profile

Skill(s) Prior Probability Posterior Probability

1 .883 .999

2 .618 .056

3 .937 .995

4 .406 .702

5 .355 .561

1 & 2 .585 .056

1 & 3 .853 .994

1, 3, & 4 .392 .702

1, 2, 3, & 4 .335 .007

1, 3, 4, & 5 .223 .492

1, 2, 3, 4, & 5 .200 .003
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Figure 1

Directed Acyclic Graph Representation



Figure 2

Undirected, Triangulated Graph Representation
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Clique I: FEVER, FLU, THRINF Clique 2: FLU, THRINF, SORTHR

Figure 3

Clique Structure
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Join Tree Representation
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Initial Probabilities for Method B Network
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Posterior Probabilities for Method B Following Item Responses
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